Skip to main content

Tasks

Tasks are the core units of action in intelli workflows. Each task handles a defined input type, processes it using a designated agent, and optionally applies pre-processing and post-processing steps.

Latest Improvements

The Task implementation has been enhanced with:

  • Improved Input/Output Handling: Better management of different data types between tasks
  • Enhanced Pre/Post Processing: More robust processing capabilities
  • Optimized Data Flow: Smarter handling of data passed between connected tasks
  • Better Type Compatibility: Improved matching of input/output types across different agent types

Parameters

Constructing a task requires providing these parameters:

  • task_input: An AgentInput instance, like TextAgentInput or ImageAgentInput.
  • agent: The Agent instance responsible for executing the task.
  • exclude (optional): A flag indicating whether to exclude the task's output from the final result (defaults to False).
  • pre_process (optional): A function to manipulate input data before sending it to the agent.
  • post_process (optional): A function to modify output data returned by the agent.
  • template (optional): A template to format the input data (uses default TextInputTemplate for text inputs).
  • log (optional): A boolean indicating whether to enable logging (defaults to False).
  • model_params (optional): Additional model parameters to override defaults when executing the agent.

Example

from intelli.flow.tasks.task import Task
from intelli.flow.input.task_input import TextTaskInput
from intelli.flow.agents.agent import Agent
from intelli.flow.processors.basic_processor import TextProcessor

# Define an agent
text_agent = Agent(
agent_type='text',
provider='openai',
mission='write a blog post',
model_params={'key': 'YOUR_OPENAI_API_KEY', 'model': 'gpt-4'}
)

# Define a task input
task_input = TextTaskInput(desc="Write a blog post about climate change.")

# Create a task with pre-processing
task = Task(
task_input=task_input,
agent=text_agent,
pre_process=TextProcessor.text_head, # Limit input size
log=True
)

Advanced Task Configuration

Dynamic Model Parameters

You can override model parameters when executing a task:

# Define a task with custom model parameters
advanced_task = Task(
task_input=TextTaskInput("Analyze this technical content"),
agent=text_agent,
model_params={
"temperature": 0.2, # Lower temperature for more focused output
"max_tokens": 1000 # Increase token limit for this specific task
},
log=True
)

Custom Pre-Processing

Create custom pre-processing functions to transform input data:

def extract_keywords(text):
"""Extract the most important keywords from text"""
# Simple implementation - in practice, you might use NLP techniques
words = text.split()
return " ".join([word for word in words if len(word) > 5][:10])

# Task with custom pre-processing
summary_task = Task(
task_input=TextTaskInput("Summarize the main points from this article"),
agent=text_agent,
pre_process=extract_keywords, # Extract keywords before sending to the agent
log=True
)

Custom Templates

You can create custom templates to format task inputs:

from intelli.flow.template.basic_template import TextInputTemplate

# Create a custom template for summarization
summary_template = TextInputTemplate(
"Please provide a concise summary of the following text:\n\n{0}\n\nInclude only the most important points."
)

# Task with custom template
task_with_template = Task(
task_input=TextTaskInput("Summarize this content"),
agent=text_agent,
template=summary_template,
log=True
)

Task Exclusion

You can exclude tasks from the final output while still using their results in the workflow:

# Intermediate task whose output we don't need in the final results
intermediate_task = Task(
task_input=TextTaskInput("Generate keywords from this content"),
agent=text_agent,
exclude=True, # This task's output won't appear in the final results
log=True
)

This is useful for tasks that produce intermediate results that are only needed for subsequent tasks but not in the final output.